Application of the Ordinary Least-squares Approach for Solution of Complex Variable Boundary Element Problems

نویسنده

  • GUO-QING YU
چکیده

Cauchy’s theorem is used to generate a Complex Variable Boundary Element Method (CVBEM) formulation for steady, two-dimensional potential problems. CVBEM uses the complex potential, w"/#it, to combine the potential function, /, with the stream function, t. The CVBEM formulation, using Cauchy’s theorem, is shown to be mathematically equivalent to Real Variable BEM which employs Green’s second identity and the respective fundamental solution. CVBEM yields an overdetermined system of equations that are commonly solved using implicit and explicit methods that reduce the overdetermined matrix to a square matrix by selectively excluding equations. Alternatively, Ordinary Least Squares (OLS) can be used to minimize the Euclidean norm square of the residual vector that arises due to the approximation of boundary potentials and geometries. OLS uses all equations to form a square matrix that is symmetric, positive definite and diagonally dominant. OLS is more accurate than existing methods and can estimate the approximation error at boundary nodes. The approximation error can be used to determine the adequacy of boundary discretization schemes. CVBEM/OLS provides greater flexibility for boundary conditions by allowing simultaneous specification of both fluid potentials and stream functions, or their derivatives, along boundary elements. ( 1997 by John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of groundwater flownets, fluxes, velocities, and travel times using the complex variable boundary element method

The complex variable boundary element method, CVBEM, employs the Cauchy integral with any complex variable (e.g., complex potential, complex flux, or complex velocity) to solve boundary value problems. The CVBEM formulation is consistent with the primal and dual solutions of the boundary integral equation, as well as the analytic element method. The resulting problem is overdetermined because t...

متن کامل

The complex polynomial method with a least-squares fit to boundary conditions

We present a new application of the complex polynomial method variant of the complex variable boundary element method. Instead of fitting the boundary conditions using collocation points, we minimize the error of fit in the l2 norm to minimize the least-squares error. This approach greatly enhances the utility and efficiency of the method, allowing us to apply the method to a variety of enginee...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Time integrations in solution of diffusion problems by local integral equations and moving least squares approximation

The paper deals with the numerical solution of initial-boundary value problems for diffusion equation with variable coefficients by using a local weak formulation and a meshless approximation of spatial variations of the field variable. The time variation is treated either by the Laplace transform technique or by the linear Lagrange interpolation in the time stepping approach. Advanced formulat...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997